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VORTEX MOTION IN DILUTE POLYMER SOLUTIONS 

A. L. Yarin UDC 532.527:532.135 

Vortex-dynamic equations have been derived and applied to two problems concerning 
annular vortices. 

i~ It has been found that an important part is played by the behavior of individual 
vortex structures in turbulent transport [I, 2] from measurements on turbulent boundary 
layers and friction reduction by polymers (about 0.001-0.01%). Here I present a quasi-one- 
dimensional approach to vortex dynamics (vortex filaments of finite thickness) in dilute 
polymer solutions. 

Measurements show that a major stage (vortex stretching) can be retarded by the entropy- 
dependent elasticity in macromolecular coils. The vortex is formed in a boundary layer or 
by a generator via velocity pulsations or pulses arising from the generator. The vorticity 
is generated in a shear layer at the boundary of the flow, with the leading part acquiring 
a mushroom form and being transferred to the core of the vortex [2]. At the head of the flow, 
the liquid particles are spread out as occurs in a free disk film arising from the collision 
of a thin jet with a small target [3]. One therefore expects that the vortex will contain 
macromolecular coils at its core, which are stretched along the axis. If the vortex is then 
stretched at a rate exceeding 0 -I , the longitudinal elastic stresses in the core will in- 
crease (otherwise, they will decrease). These stresses influence the velocity pattern and 
thus the core evolution. The vortex is surrounded by unstretched liquid, and although the 
liquid and the core contain macromolecules, the elastic stresses in the latter are negligible, 
and it may be considered as ideal (if vortex diffusion is negligible). 

We now consider a vortex whose core is subject to a longitudinal elastic stress (the 
liquid is considered as incompressible). We assume as a first approximation that this stress 
is constant over the cross section of the core. Correspondingly, the stress tensor in the 
core will be o' = o~ fT. The sum of this elastic tensor o' and the viscous-stress tensor 
is the deviator for the stress tensor in the liquid [4]. The equation for the core.vorticity 
is 

D~ 1 
- ( ~ . v ) v  + ~A~ + --v• (v .o ' ) .  (1 )  

Dt p 

From (i), viscous effects are unimportant for times less than t < m2/v, which we consider. 

The contribution from the elastic stresses in (I) is 

V X (V.O') = b \ .a~x ~ ~ , - - - ~ / - -  k,• (2) 

The right side of (2) is zero for rectilinear ~nd annular vortices and is small in the 
long-wave approximation for any vortex. We therelore restrict ourselves to that approxima- 
tion for times t < m2/v, where the second amd thir~d terms on Zhe right in (I) ~n be 
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neglected, after which (i) reduces to a Helmholtz equation. In that approximation, the 
vortex is frozen, although the core has longitudinal elastic stresses. 

In the core, 

Dv _ 1 VP -1- r a y  "-f- 1 V" a'. 
Dt 9 P 

(3) 

For times t < m2/v, the viscous effects are unimportant, and (3) gives 

Dv 1 1 ( k,n~x -}- 
Dt - 9 vP - t - - -~  , 6~ ]" 

(4) 

We denote by C the circular contour of the core section; we introduce the polar angle 
r and an element of C denoted by dl =md~(n cosr - b sinr (4) gives 

~.~ (5) .4 o v . . d  I _- _1 t = o. 
c Dt p o 

Thomson's kinematic theorem [5] gives with (5)  that 

Dr (6) 
-dl = - - =  0. Dv 

c Dt Dt 

We then have that the vortices in dilute polymer solutions retain their individuality and 
intensity r. 

To trace the vortex evolution, we introduce the radius vector R and velocity V of a 
liquid particle at the axis, which we parametrize by means of the arbitrary coordinate s: 

DR OR - - - - -  + W T = V = V , q - w ,  
Dt Ot 

W = ~ ,  Ds ~ = [  OR O _ O 
Dt ' ] ~ ' O~ ZOs 

(7) 

We consider a single vortex in an unbounded ideal liquid immobile at infinity. We use 
the Biot-Savart formula or the quasi-one-dimensional momentum balance while neglecting terms 
o(in[i/(k,m)]), k~ << i (thin vortex) to get [6, 7] that 

V , - -  r k , b  In 1 . (8)  
43x k~m 

An annular vortex in an unbounded ideal liquid is covered by a more accurate result, 
namely Maxwell's formula, in which terms o(i) are neglected [8]: 

(9) 
V , =  Fb (ln 8a 1 )  

4~a m 4 

We determine the velocity component w. We consider the vortex as a distinct line and 
write the quasi-one-dimensional equations of continuity and momentum balance for it as in the 
theory of thin free liquid jets [9, i0]. That approach has been used previously for motion 
in heated vortices [ii] and for vortices in an ideal liquid showing longitudinal flow within 

the cores [7, 12]. 

Individuality in the vortices means that the mass of the liquid in the cores is con- 
served, which we write D(pflds)/Dt = 0. Then D(ds)/Dt = B(WA-1)/3sds gives us the quasi-one- 
dimensional equation of continuity 

Of__.~ + OWl = 0 ,  f = ~m~. ( 1 0 )  
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The results of [7] are used with the force balance acting on a core element of length 
Ads, which gives 

a ( n )  
P,rTxw+ T O--]-(a~J~)+(p--OOf~.g.~: 0. 

Here the first term is related to the Zhukovskii force acting on the vortex and the 
second to the stresses in the core due to the entropy-dependent elasticity in the macro- 
molecular coils; we have also incorporated the mass force acting on the core for liquid of 
density p differing from the density of the surrounding liquid Pz- 

Typically, w is only a small correction to V,, and it can then be shown [7] that the 
forces pfDw/Dt related to the inertia of the core and the surrounding liquid (adjoint mass) 
are O((k,m) 2) by comparison with the forces included in (ii). The long-wave approximation 
corresponds to k,m << 1 (thin vortices), so inertial forces are not incorporated into (ii). 

A rheological relation is required as usual to close the equations. Here we can use the 
Hinch-De Gennes molecular hydrodynamic model [4, 13], which gives as follows for the uniaxial 
stretching in the core: 

Nob aL,, V aL,~ ~;~ = c• L , , ,  ~ + 
Nob - -  ! / ~  at ~, as 

= 2 L ~  ~ as o VL-~, N o b - - V ~  ,L~  3 ' t o =  ~.= Nob----~. (12) 

Then the equations describing the individual vortices for dilute polymer solutions are 
(7) and (8) or (9) with (10)-(12). if there are several vortices and/or an external flow, 
the contributions from these to the speed of a particular vortex should be added to the 
right sides of (8) and (9). 

2. The first example is a vortex ring in an unbounded ideal liquid moving vertically 
under buoyancy forces; we use the Lagrange parameter for the axis. We assume that s is equal 
to the polar angle reckoned in the plane of the ring. Then ~ = a and W = 0 in (7), and (i0) 
gives am 2 = const, while (ii) gives 

p f ( e ~ w ~ - - k ~ r ) - - ~ m Z ( o - - p ~ ) g k  = O. 

Here it is assumed that the unit vector in the cylindrical coordinate system k and the 
corresponding axis Oz are directed vertically upwards. From (13) we get that 

(13) 

m~=-0, p~Pwr=--~mZ(p--pl)g. 

From the first equation in (7) with (9) and (14) we get 

(14) 

d Z  --F (ln .8a 1 ), da  _ _ ~ m z ( p - p l )  g (15) 
d---/-= 4~a  m 4 dt ~r = p~p 

Also, 

am 2 = aom~. (16) 
System (15) and (16) enables one to calculate the motion of a vortex ring. Let F < 0 

and p > Pz, which corresponds to the vortex arising when a drop of heavy liquid falls into a 
light one. Then (15) and (16) imply the paradoxical conclusion predicted in [14]: the 
vortex moves in the direction of gravity while expanding (da/dt > 0) and being retarded (!) 
approximately as i/~. 

One mainly uses another approach in calculations on ring vortex motion in the presence 
of buoyancy forces. The basis is the Helmholz equation in integral form (the equation for 
the vortex momentum) [8, 14, 15]: 

p D j . r •  ' P~-~Pl, (17) 
2 Dt 
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Here the integration is taken over the entire infinite volume of liquid. 

One calculates the integrals in (17) for the case of an isolated thin annular vortex 
showing quasisolid motion at the core, which gives the second equation in (15). The first 
equation in (15) naturally still applies. 

This example has been considered to show that there is satisfactory accuracy from (ii). 
There is agreement between the vortex expansion speeds calculated from (17) and (ii), which 
confirms the latter, since (17) differs from (ii) in being exact for an ideal liquid. This 
leads one to hope that (ii) is reasonably accurate when one cannot use the approach via the 
integral Helmholtz equation. 

3. These equations are applied to a vortex ring in a polymer solution encountering a 
parallel wall (a situation similar to the model experiments of [2], in which however the 
vortices approached the wall at an angle). The condition at the wall is satisfied by intro- 
ducing a mirror vortex that induces a velocity V,I at the axis of the incoming vortex in 
accordance with the Biot-Savart formula, where the components along the normal and binormal 
to the axis are 

(V,a)n = rZk~ [(1 2 ) E(kl) 2 ] _ _  _ V - ,  - + , 

(V,x)b = rka { ( 1 - - 2  ) 2 E(k~)-[-k~Z2 [ ( I - - 2  ) E(k,) _ ~  ]} 
4~a ~ K (ka) -t- k-'~a a ~ ~ 1 -- k'---~x + K (k~) , (18) 

1 

k~ = V 1  + z 2 7 ~  " 

These expressions contain the elliptic integrals 

~/2_]/ . ~2 d~ (19) 
E(kt)=f  1--k]sin 2,d% K(k~)=o j Vl_k]s in  ~) '  

and Z > 0 denotes the distance frcm the vortex to the wall (z = 0). 

We assume the following parameters: initial radius of core axis and cross sectional 
radius of core a 0 = 10 -2 m and m 0 = 0.2 • 10 -2 m, r 0 = i0 -? m, c = 102o i/m 3, p = Pl = 103 
kg/m 3, K = 10 -6 kg/sec 2, No = 2.36 • 104 , JF I = 10 -3 m2/sec, 8 = i0 -I see, and ~ = i0 -s 
m2/sec. These values correspond approximately to the conditions of [2], where the vortices 
were produced by a generator and the polymer concentrations were 0.02-0.1%. In general, 
there are links between the macromolecular coils at such concentrations, which increase 
the viscosity and relaxation time. This circumstance is incorporated here from the choice of 
8 and ~, which exceed the characteristic values for truly dilute aqueous solutions by an order 
of magnitude. 

The value of m~/v in this case is 0.4 sec, so we consider times t < 0.4 sec to neglect 
the vortex diffusion. In the experiments of [2], annular vortices were used with radii of 
curvature for the core axes a % 10 -2 m, and the vortices could travel a distance of about 
%(1-2)'10 -2 m, which was approximately the path length before collision with the wall. 

We parametrize the core axis with the same Lagrange parameter as in section 2; then (7), 
(i0), (ii), and (12) reduce to the following on the basis of (9): 

dZ__Z_=dt ~4nar (ln 8am 41)-k-(V*Ob-k-w b (F < 0), 

da _ (V,1)n-- w,, am 2 = aom~o, 
dt 

c• ob L ~ ~nrn 2 
w,~=0, wb= pFa(Nob -[/~0' ,  

dL,, 2L.~.~ da 2 ro Nob [ r2o) 
dt -- a dt 0 ]/-E~ Nob --  ] / - ~  " t L~, -- T J" 

(20) 

900 



Lz~ 
g 

,za o5 z ~ 

Fig. i. Changes in the radius of the vortex core 
axis and in the axial component of the orientation- 
deformation tensor as a vortex approaches the wall: 
!) vortex radius change in an ideal liquid; 2) the 
same in a polymer solution (L~ 0 = i0 r20); 3) 
change in LT~ for a vortex in polymer solution 
(corresponds to curve 2); with Z and a referred to 
a 0 and LT~ -- r02, calculation carried through to 
contact between the wall and the vortex core. 

System (18)-(20) was integrated numerically with the initial conditions 

t=O, Z=ao, a=ao,  i ~ = i ~ o .  (21) 

Figure i shows the calculations, which showed that the reduction in the radius of the 
vortex axis in the polymer solution by 20% near the wall (by comparison with an ideal liquid), 
which was approximately as in [2], was attained for L~ 0 = i0 r~, which corresponds to 
initial coil stretching along the circular axis of the vortex to an extent about 5.5 times 
the equilibrium value, which is here due to vortex formation. The calculations show that the 
vortex stretching on approaching the wall is slight in the sense that the stretching rate is 
insufficient to increase the deformation of the macromolecular coils in the axial direction. 
This is evident from curve 3, where relaxation predominates over stretching and LTT falls. 
Only near the wall, where the stretching rate increases, does the rate of decrease in LTT 
fall. Nevertheless, the residual unrelaxed elastic stresses are sufficient to retard the 
stretching by an amount close to that observed in [2]. 

NOTATION 

8, relaxation time; n, b, T, unit principal normal, unit binormal, and unit tangent 
vectors of vortex core axis; o~, elastic stress in vortex core cross section; o', elastic 
stress tensor; ~, vorticity vector; D/Dt, derivative with respect to time t; v, velocity 
vector; ~, p, kinematic viscosity and density of the liquid; m, radius of vortex core cross 
section; k, ~,, curvature and torsion of vortex core axis; $, arc length of vortex core axis; 
p, pressure; r polar angle in vortex core cross section; dl, vector element of vortex core 
cross section contour; F, vortex intensity; R, V, radius vector and velocity of particle on 
vortex core axis; s, arbitrary parameter of vortex core axis; V,, velocity component of 
vortex core axis particle induced by other vortices (if any) and by the bulk potential flow; 
w, velocity component of vortex core axis particle originating from macromolecular elastic 
entropy forces and weight, for a denser liquid in an immiscible one; a, radius of curvature 
of vortex ring core; f, area of vortex core cross section; g, acceleration due to gravity; 
21, density of surrounding liquid; b, Kuhn segment length; No, number of Kuhn segments in 
macromolecule; r, equilibrium radius of gyration; c, number density of macromolecules; K, 
entropy elasticity of macromolecular coil; k, Boltzmann's constant; T, temperature; LTT , 
axial component of orientation-deformation tensor; er, k, unit radial and axial vectors 
in cylindrical coordinate system; Z, vortex ring position; r, radius vector of particles; 
dv, volume element; V,z , velocity induced in vortex axis by an imaginary vortex; z, coordi- 
nate aong the vortex axis. Subscripts indicate the projections on the corresponding axes. 
Subscript 0 for values at t = 0. 
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2. 
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EFFECTS OF VARIABLE PHYSICAL PROPERTIES ON HEAT TRANSFER 

IN FREE CONVECTION AROUND A HORIZONTAL CYLINDER 

G. G. Shklover and S. E. Gusev UDC 536.25 

Theoretical and experimental studies have been made on the effects of variable 
viscosity and compressibility on the average heat-transfer coefficient. 

General formulas have been recommended [2, 3] in [i] for calculating heat transfer by 
free convection ~rom a horizontal cylinder; the purpose was to obtain a single formula 
applicable over wide ranges in the Rayleigh and Prandtl numbers. The variability in the 
physical properties was incorporated by taking the mean boundary-layer temperature T v = 
0.5(T0 + T c) as the definitive quantity. Here we determine the ranges in the physical 
parameters in which these formulas apply. An approximate method is proposed for incorporating 
the property variation more precisely. 

There are comparatively few papers dealing with the effects of variability in physical 
properties on heat transfer from horizontal cyliners.: 

Akagi [4] derived an approximate self-modeling solution and showed that the variability 
can be incorporated by solving a self-modeling equation system analogous to that for a 
vertical plate. The solution was derived numerically for an exponential temperature dependence 
of the dynamic viscosity. The average Nusselt number was derived [4] as 

Nu : 0.515(GroPro)~176 (1) 

where Nu = ~D/~; Gr0 = g~0D3(Tc - T0)/v~, which applies for Pro = i00 to I0000; Po/~c = 
i to 140. The correction factor (p0/~c)~ can be discarded if one calculates the physical 
properties from the defining temperature Te = To + 0.75(T c - To). Formula (i) is close to 
the experimental one derived in [5]. 

In [6], measurements for the range i0 = < ~0/~c < 104 gave 

Nu ::  0.70(GroPro)~ ~ (2)  

Studies have been made [7, 8] on the effects of simultaneous temperature dependence for the 
bulk expansion coefficient and kinematic viscosity. 
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